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Abstract. We compute the electromagnetic form factor of the pion, using non-perturbativelyO(a) improved
Wilson fermions. The calculations are done for a wide range of pion masses and lattice spacings. We check
for finite size effects by repeating some of the measurements on smaller lattices. The large number of lattice
parameters we use allows us to extrapolate to the physical point. For the square of the charge radius we find〈
r2
〉
= 0.444(20) fm2, in good agreement with experiment.

PACS. 12.38.Gc; 13.40.Gp; 14.40.-n

1 Introduction

For some time now it has been possible to explore the struc-
ture of hadrons from first principles using lattice QCD.
Since the pion is the lightest QCD bound state and plays
a central role in chiral symmetry breaking and in low-
energy dynamics, a thorough investigation of its internal
structure in terms of quark and gluon degrees of freedom
should be particularly interesting. We have started to ex-
plore the structure of the pion in a framework using gen-
eralised parton distributions, or, more precisely, their mo-
ments [1]. As a generalisation of parton distributions and
form factors, they contain both as limiting cases. In this
work we restrict ourselves to results for the pion electro-
magnetic form factor Fπ from Nf = 2 lattice QCD sim-
ulations, based on O(a) improved Wilson fermions and
Wilson glue. Initial studies on the pion form factor by
Martinelli et al. and Draper et al. [2, 3] were followed
by recent simulations in quenched [4–7] and unquenched
QCD [8, 9]. In this work, we improve upon previous cal-
culations by extracting the pion form factor for a much
larger number of (β, κ) combinations, which allows us to
study both the chiral and the continuum limit. Further-
more, two finite size runs make estimates of the volume
effect possible.

a e-mail: dirk.broemmel@desy.de

2 The pion form factor in lattice QCD

The pion electromagnetic form factor Fπ describes how the
vector current

Vµ(x) =
2

3
u(x)γµu(x)−

1

3
d(x)γµd(x) (1)

couples to the pion. Writing p and p′ for the incoming and
outgoing momenta of the pion, it is defined by

〈
π+(p′)

∣∣Vµ(0)
∣∣π+(p)

〉
= (p′µ+pµ)Fπ

(
Q2
)
, (2)

where the momentum transfer is qµ = (p
′
µ−pµ) and its in-

variant square is q2 =−Q2.
For our lattice calculation we want to simplify the

flavour structure of (1). Invoking isospin symmetry, one
finds

〈
π+
∣∣ 2
3
uγµu−

1

3
dγµd

∣∣π+
〉
=
〈
π+
∣∣uγµu

∣∣π+
〉

=−
〈
π+
∣∣ dγµd

∣∣π+
〉
. (3)

It is hence sufficient to limit the calculation to a single
quark flavour in the vector operator. We use the unim-
proved local vector current on the lattice; the corrections
due to the improvement term [10] are quite small and
will be discussed later. Since this current is not conserved,
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renormalisation has to be taken into account. Because in
the forward limit (Q2 = 0) the form factor is simply the
electric charge of the pion, we can normalise our data ap-
propriately. We can also use the known renormalisation
constant ZV (taken for example from [11]) as a cross-check
for our simulation.
To compute the matrix elements in (2) on the lattice,

one has to evaluate pion three-point and two-point func-
tions. We then apply a standard procedure to extract the
pion form factor Fπ , where one constructs an appropriate
ratio for the observable [12, 13]. Let us start by looking at
the three-point function. The general form is given by the
correlation function

C3pt(t,p
′,p) =

〈
ηπ(tsink,p

′)u(t)γµu(t)η
†
π(tsource,p)

〉

(4)

and depicted in Fig. 1. Here we denote the sink and source
operators for a pion with given momentum and at given
time-slice by ηπ(tsink,p

′) and η†π(tsource,p), respectively.
Using the transfer matrix formalism and inserting com-
plete sets of energy eigenstates, the three-point function is
then of the form

C3pt(t,p
′,p) = 〈π(p′)|u(0)γµu(0) |π(p)〉

×
〈0| ηπ(p′) |π(p′)〉 〈π(p)| η†π(p) |0〉

2Ep′2Ep

×
(
e−Ep′ (tsink−t)−Ept

+ (−1)n4e−Ep′ (tsink−(T−t))−Ep(T−t)
)
+ · · · ,

(5)

where T is the time extent of our lattice, and

n4 =

{
1 for µ= 4,
0 otherwise.

(6)

Note that we have omitted excited states in (5), and we
have already inserted our choice for the time-slice of the
pion source, tsource = 0. We choose the sink of the three-
point function as tsink = T/2, so that the correlation func-
tion is symmetric or antisymmetric with respect to this
time,

C3pt(t,p
′,p) = (−1)n4C3pt(T − t,p

′,p) . (7)

We can then separate the correlation function into contri-
butions from t to the left and to the right of tsink (referred
to as l.h.s. and r.h.s. in the following) and neglect either

Fig. 1. A sketch of the three-point function with the pion
source at time 0, pion sink at tsink, and the operator acting at
time t

the second or first term in (5), since it is exponentially sup-
pressed in the regions of t from which we will extract the
form factor.
The two-point function has the form

C2pt(t,p) =
〈0| ηπ(p) |π(p)〉 〈π(p)| η†π(p) |0〉

2Ep

× e−EpT/22 cosh[Ep(T/2− t)]+ · · · , (8)

where again we omitted higher energy states. Comparing
the two- and three-point functions (8) and (5), a ratio can
be constructed that eliminates the overlap factors such
as 〈0| ηπ(p′) |π(p′)〉 and partially cancels the exponential
time behaviour appearing in (5). This technique also has
the advantage that fluctuations of the correlation functions
tend to cancel in the ratio, and we thus obtain a better sig-
nal. With our choice tsink = T/2, such a ratio is

R(t) =
C3pt(t,p

′,p)

C2pt(tsink,p′)

×

[
C2pt(tsink− t,p)C2pt(t,p′)C2pt(tsink,p′)

C2pt(tsink− t,p′)C2pt(t,p)C2pt(tsink,p)

] 1
2

.

(9)

Similar ratios have already been used in earlier works on
pion and nucleon structure. Here we take the somewhat
more complicated ratio (9), which was used for the nu-
cleon in [12], because we use momentum combinations
with |p| �= |p′|. Contributions to this ratio from excited
states with energy E′ are suppressed as long as tsink−
t� 1/(E′−E) and t� 1/(E′−E), whereE is the pion en-
ergy. A potential problem is that, due to the exponential
decay of the pion two-point function, the signal at t= tsink
for non-vanishingmomenta is poor. For finite statistics, the
two-point function can then take negative values, which
prevents one from evaluating the square root. We try to
overcome this difficulty by shifting the two-point functions
C2pt(t,p) that enter with t= tsink. Using the identity

C2pt(tsink,p) =
C2pt(tsink− tshift,p)

cosh(Eptshift)
(10)

valid for tsink = T/2, we shift by tshift = 6, which signifi-
cantly reduces the number of negative two-point functions.
Nevertheless there are still momentum transfers Q2 for
which the argument of the square root in the ratio (9) is
negative. Those values are discarded when we evaluate the
form factor.
For Q2 �= 0 the ratio (9) does not exhibit a proper

plateau that could immediately be used for fitting. This is
due to our choice for tsink, for which the time dependence
of the pion two-point function cannot be approximated by
a single exponential in the t regions we use to extract the
form factor; see (8). In fact, we now show that the ratio
is approximately antisymmetric around the central point
t= tsink/2= T/4 of the l.h.s. (as well as around t= 3T/4 on
the r.h.s.). Defining δ ≡ t− tsink/2 and expanding the ratio
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and its exponentials in (9) around δ = 0, we find

R(t) = C(Ep, Ep′ , Q
2)

×
[
1+2δcδ(Ep, Ep′)+2δ

2c2δ(Ep, Ep′)+O(δ
3)
]
,

(11)

where

cδ(Ep, Ep′) =
Ep′

1+ eEptsink
−

Ep

1+ eEp′ tsink
,

C(Ep, Ep′ , Q
2) =

(p′µ+pµ)

4
√
Ep′Ep

Fπ
(
Q2
)
. (12)

When averaging R(t) in a symmetric interval around t=
T/4, the antisymmetric piece proportional to cδ in (11)
drops out. However, such an averaged signal also includes
unwanted symmetric contributions. Fortunately, for our
pion masses and lattice momenta already the leading sym-
metric term is negligible, because with the lattice spac-
ing a we have c2δ ∼ 10

−4a−2 and δ2 ≤ 4a2 in our fits. We
hence obtain a good signal for the averaged ratio. The same
is true for the r.h.s. ratio and its central point t = 3T/4.
A typical ratio at non-zero momentum transfer is shown
in Fig. 2 for one of our data sets, along with the familiar
plateau for zero momentum transfer. Note that the ratio
(9) does not exhibit a plateau for arbitrary momenta. To
visualise the absence of possible contributions from excited
states, one has to consider the ratio for |p| = |p′|. In this
case the time dependence of the three-point function (5)
should vanish. We have checked that this is indeed the case
in the region we average over, within the expected increase
of noise for higher momenta or lower pion masses.
From (11) and (12) we see that the lattice ratio (9) can

be used to extract the form factor Fπ
(
Q2
)
. Using then

several combinations of momenta p and p′ that all give
the same Q2 provides an over-constrained set of equations,
from which we determine Fπ

(
Q2
)
by χ2 minimisation. We

increase the quality of our signal by averaging the ratio
over the contributions on the l.h.s. and r.h.s. This requires
the additional sign factor (−1)n4 between the two sides, as
can be seen in (7). The energies Ep and Ep′ appearing in
(10) and (12) are calculated using the lattice pion masses
and the continuum dispersion relation. We also performed
a test of the dispersion relation for some of our lattices. It
was increasingly difficult to extract a signal for higher mo-
menta, especially for the lowest pion masses. However, we

Fig. 2. Examples of the ratio R(t) in (9)
on the 243× 48 lattice at β = 5.25 and
κ= 0.13575, multiplied with an appropriate
sign factor (−1)n4 for t > tsink. The left plot
shows a proper plateau in the forward case
Q2 = 0, and the right plot shows the ratio
for Q2 = 0.31 GeV2 where no plateau is ex-
pected (see text). The dashed lines indicate
the regions we average over

found that the continuum dispersion relation can be used
to describe the data and that a lattice dispersion relation is
not favoured.

3 Simulation details

We perform our simulations with two flavours of non-
perturbatively clover-improved dynamical Wilson fermi-
ons and Wilson glue. Using these actions, the QCDSF and
UKQCD collaborations have generated gauge field con-
figurations with the parameters given in Table 1, where
we have used the Sommer parameter with r0 = 0.467 fm
(see [14] and [15]) to set the physical scale. This large set
of lattices enables us to extrapolate to the chiral and the
continuum limit. For two sets of parameters (β = 5.29 and
κ= 0.1355, 0.1359),we also have a choice of lattice volumes
(123×32, 163×32 and 243×48) in order to study finite
volume effects.
Starting with the lattice version of the three-point func-

tion, (4), we follow [16] and find that it is sufficient to
calculate

∑

y

∑

z

e−ip
′·y eiq·z

〈
TrΓG(y, z)γµG(z, x)Γ

†G(x, y)
〉
g

(13)

with x4 = 0, y4 = T/2 and z4 = t. Here G(y, z) is the fer-
mion propagator, the average is taken over the gauge fields,
and the trace is over the suppressed Dirac and colour in-
dices. The matrix Γ represents the Dirac structure of the
pion interpolating field ηπ, while the Fourier transform-
ations ensure that we have fixed momenta at the operator
insertion and the sink.
We use two different pion interpolating fields to create

the pions on the lattice, namely a pseudo-scalar and the
fourth component of the axial-vector current, which both
have the correct quantum numbers. For a givenmomentum
p they read

ηπ(t,p) =
∑

x

e−ip·xd(x)Γu(x), Γ = γ5 or γ4γ5 (14)

with x4 = t. We apply Jacobi smearing [17] at the source as
well as the sink to increase the overlap of the lattice inter-
polating fields with the physical pion states.
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Table 1. Overview of our lattice parameters. For physical units the Sommer parame-
ter with r0 = 0.467 fm has been used. The error on mπ is purely statistical

β # κ N3×T mπ [GeV] a [fm] L [fm] Ntraj

5.20 1 0.13420 163×32 1.007(2) 0.115 1.8 O(5000)
2 0.13500 163×32 0.833(3) 0.098 1.6 O(8000)
3 0.13550 163×32 0.619(3) 0.093 1.5 O(8000)

5.25 4 0.13460 163×32 0.987(2) 0.099 1.6 O(5800)
5 0.13520 163×32 0.829(3) 0.091 1.5 O(8000)
6 0.13575 243×48 0.597(1) 0.084 2.0 O(5900)

5.26 7 0.13450 163×32 1.011(3) 0.099 1.6 O(4000)

5.29 8 0.13400 163×32 1.173(2) 0.097 1.6 O(4000)
9 0.13500 163×32 0.929(2) 0.089 1.4 O(5600)
10 0.13550 243×48 0.769(2) 0.084 2.0 O(2000)
11 0.13590 243×48 0.591(2) 0.080 1.9 O(5900)
12 0.13620 243×48 0.400(3) 0.077 1.9 O(5600)

5.40 13 0.13500 243×48 1.037(1) 0.077 1.8 O(3700)
14 0.13560 243×48 0.842(2) 0.073 1.8 O(3500)
15 0.13610 243×48 0.626(2) 0.070 1.7 O(3900)

The three-point function (13) is then evaluated by ap-
plying the sequential source technique as indicated in
Fig. 1. This makes it efficient to use a large number of mo-
mentum transfers, as required for calculating form factors.
A large set of momenta is necessary to assess the Q2 de-
pendence, and having several combinations of p′ and q
belonging to the same Q2 makes the fits more reliable. We
use three final momenta p′ and 17 momentum transfers q,
giving a total of 51 combinations for an over-constrained
fit for Fπ at 17 different values of Q

2. In units of 2π/L, the
momenta are given by

p′ =(0, 0, 0), (0, 1, 0), (1, 0, 0),

q=(0, 0, 0), (−1, 0, 0), (−1,−1, 0), (−1,−1,−1),

(−2, 0, 0), (−2,−1,−1), (−2,−2,−1) , · · · (15)

where · · · stands for all possible permutations with respect
to the components. The errors we quote for our results are
statistical errors obtained by the jackknife method.

4 Experimental data for the pion form factor

Let us now take a brief look at the experimental measure-
ments of Fπ

(
Q2
)
to which we compare our lattice results.

Very accurate data up to Q2 = 0.253GeV2 have been ob-
tained in [18] from elastic scattering of a pion beam on the
shell electrons of the target material. At higherQ2 the pion
form factor has been extracted from ep→ enπ+, which is
considerably more involved (see [19] for a recent discus-
sion). We only use here data from [20–23], where the cross
sections for longitudinal and transverse photons have been
experimentally separated by the Rosenbluth method.1 To-

1 For the data from [21] we use the results of the re-analysis
in [24].

gether these data span the range from Q2 = 0.35 GeV2 to
2.45GeV2.
We find the experimental data on Fπ well described by

a monopole form

Fπ
(
Q2
)
=

1

1+Q2/M2
, (16)

with a fit of the combined data from [18, 20–23] giving
M = 0.714(4)GeV at χ2/d.o.f. = 1.27. This is remarkably
close to the result M = 0.719(5)GeV at χ2/d.o.f. = 1.13
obtained when fitting only the data of [18] with its much
smaller range in Q2, which illustrates the stability of
the monopole form up to 2.45GeV2.
The low-Q2 behaviour of Fπ is characterised by the

squared charge radius

〈
r2
〉
=−6

dFπ
(
Q2
)

dQ2

∣∣∣∣∣
Q2=0

. (17)

For a monopole form (16) one has

〈
r2
〉
= 6/M2 . (18)

In Table 2 we list the values obtained from a number of fits
to Fπ. The PDG average [25] uses results from form factor
data at both spacelike and timelike virtualities. The three
fits to the Amendolia data [18] illustrate that different fit-
ting procedures can give results with a variation much big-
ger than the quoted statistical and systematic errors. Fit 1
(whose result is the one retained in the PDG average) is
based on a representation of Fπ as a dispersion integral.
Fit 2 was also given in [18] and assumed a monopole form
(16) with a normalisation factor allowed to deviate from 1
by ±0.9%, which corresponds to the overall normalisation
uncertainty of the measurement. Fit 3 assumes a monopole
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Table 2. Values of the squared pion charge radius
obtained from different data sets for Fπ(Q

2) and
with different fitting assumptions. Details of the
fits are given in the text

data
〈
r2
〉
[fm2]

global average, PDG 2004 [25] 0.452(11)
Amendolia [18], fit 1 0.439(8)

fit 2 0.431(10)
fit 3 0.451(6)

combined data [18, 20–23] 0.458(5)

form with normalisation fixed to 1, as does the fit to the
combined data of [18, 20–23].

5 Results

5.1 Fits to lattice data and extrapolation in mπ

We start the discussion of our results by explaining our fit-
ting procedure, including combined fits to all data sets. In
the next subsection we will argue that lattice artifacts are
small. To obtain the physical form factor we have to renor-
malise our lattice result, F renπ = ZV F

bare
π . As mentioned in

Sect. 2, we can do this by using the electric charge of the
pion as input, i.e.

F lat,renπ

(
Q2
)
=
F lat,bareπ

(
Q2
)

F lat,bareπ (0)
, (19)

so that F lat,renπ (0) = F physπ (0) = 1. We then use a monopole
ansatz to fit the actual data for the form factor2

F latπ (Q
2) =

1

1+Q2/M2lat
, (20)

where we have Mlat as a fit parameter for each of our lat-
tices at its lattice pion mass mπ,lat. The quality of this
fitting ansatz will be discussed below.
Using this fitting function, we compare the results ob-

tained with the two pion interpolating fields (14) and ob-
serve several differences. In general, the matrix elements
for pions using Γ = γ4γ5 display a slightly cleaner signal
with more data points in Q2, i.e. less contamination due
to negative two-point functions. Fitting the monopole form
(20) to the form factor for both pion interpolators we find
that the χ2/d.o.f. differs on average by about a factor
of 2, ranging from 0.18–1.72 (0.23–3.49) for the interpo-
lator with γ4γ5 (γ5). The fitted monopole masses for the
Γ = γ5 pions lie consistently above the ones for Γ = γ4γ5
but agree within errors for most lattices. In an exploratory
extraction of the pion energies from the two-point func-
tions with non-vanishing momentum on a sub-set of our

2 We will from now on use the renormalised values and drop
the superscripts unless required. The super- and subscripts
‘lat’ and ‘phys’ respectively refer to observables at lattice pion
masses and at the physical point.

lattices, we also found that the pseudo-scalars with Γ = γ5
had a worse signal at higher momenta. A similar obser-
vation was made in [8] and may explain the difference in
quality of the form factors extracted from the two pion cur-
rents. Because of the better signal, we will mainly discuss
results for the pions created with Γ = γ4γ5 in the remain-
der of this work.
To obtain the pion form factor at the physical pion mass

we extrapolate the values for Mlat, given in Table 3, to
the physical point. We tried different extrapolations in the
square of the pion mass, see Table 4, including also a fit in-
spired by chiral perturbation theory and used in [9]. For
the latter we chose the fit range ofm2π,lat < 0.8 GeV

2. Vary-
ing this fit range within reasonable bounds did not have
a significant effect on the extrapolated value ofMphys. We
find the best χ2 value for fit 2, where M2lat depends lin-
early on m2π. The extrapolations in the remainder of this
paper are based on this ansatz. We will however include
an estimated systematic error of∆Mext = 35MeV from the
difference of fits 1 and 2 in our final result (this is big-
ger than the difference between fits 1 and 4, whereas fit 3
gives a significantly worse description of the data). Figure 3
shows the extrapolation to the physical pion mass based
on fits 2 and 4. We remark that our lattice with the low-
est pion mass,mπ = 400MeV, is completely consistent and
increases our confidence in the fit and in the fit ansatz.
However, due to the larger statistical errors it has little
weight in this result: when leaving it out of the fit Mphys
changes only by 1MeV. The corresponding run and several
others at small pion masses are still in progress. It is ob-
vious that one needs higher statistics for this point to be
significant.
We include the mπ dependence of the monopole mass

of fit 2 in a combined fit to all our lattice data available.

Table 3. Monopole masses Mlat obtained from fits to (20) for
each of our lattices. The last column gives an estimate for the
shift ∆Mlat =M(m

2
π,∞)−M(m

2
π, L) of the monopole mass

due to finite volume effects. It is obtained from the empirical fit
(26) discussed in Sect. 5.2

# mπ [GeV] L [fm] mπL Mlat [GeV] ∆Mlat [MeV]

1 1.007(2) 1.8 9.4 1.104(22) 0.3
2 0.833(3) 1.6 6.6 0.997(21) 4.3
3 0.619(3) 1.5 4.7 0.880(24) 35.2

4 0.987(2) 1.6 7.9 1.089(20) 1.1
5 0.829(3) 1.5 6.1 0.975(17) 7.2
6 0.597(1) 2.0 6.1 0.870(22) 8.0

7 1.011(3) 1.6 8.1 1.066(25) 0.9

8 1.173(2) 1.6 9.2 1.157(20) 0.3
9 0.929(2) 1.4 6.7 1.051(15) 3.7
10 0.769(2) 2.0 7.8 0.971(14) 1.3
11 0.591(2) 1.9 5.7 0.854(15) 12.6
12 0.400(3) 1.9 3.8 0.783(36) –

13 1.037(1) 1.8 9.7 1.099(13) 0.2
14 0.842(2) 1.8 7.5 0.981(14) 1.8
15 0.626(2) 1.7 5.3 0.847(17) 18.2
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Table 4. Different forms used to extrapolate the monopole mass to the physical
value of mπ. In fit 4 we have L = 1/(4πfπ)

2 log
(
m2π,lat/µ

2), where µ = 1GeV and
fπ ≈ 92MeV is the pion decay constant

# extrapolation ansatz χ2/d.o.f. c1 Mphys [GeV]

1 Mlat = c0+ c1m
2
π,lat 1.31 0.322(15) GeV−1 0.761(13)

2 M2lat = c0+ c1m
2
π,lat 0.93 0.647(30) 0.726(16)

3 1/M2lat = c0+ c1m
2
π,lat 3.25 −0.575(31) GeV−4 0.833(9)

4 6/M2lat = c0+ c1m
2
π,lat−L 1.11 −4.33(62) GeV−4 0.715(4)

Fig. 3. Extrapolations of the squared monopole mass against
the squared pion mass. The solid line with error band is a lin-
ear extrapolation as obtained from fit 2, while the dotted line
shows the central curve for fit 4 (whose fit range is limited
to m2π < 0.8 GeV

2). The cross marks the monopole mass cor-
responding to the PDG value [25] of the pion charge radius;
see (18) and Table 2. The different symbols refer to our β-
values: squares (5.20), circles (5.25), half-full circle (5.26), di-
amonds (5.29), and hexagons (5.40)

This fit has the same monopole form as in (20) with one
additional parameter to incorporate themπ behaviour,

Fπ
(
Q2,m2π

)
=

1

1+Q2/M2 (m2π)
,

M2
(
m2π
)
= c0+ c1m

2
π . (21)

The two fit parameters, c0 and c1, describe the relation be-
tween the monopole mass and the pion mass, and we imme-
diately obtain the form factorF physπ (Q2) = Fπ(Q

2,m2π,phys)
in the physical limit. The fitted parameters are c0 =
0.517(23)GeV2 and c1 = 0.647(30) with χ

2/d.o.f. = 0.64.
This gives Mphys =M(m

2
π,phys) = 0.727(16)GeV, in good

agreementwith the experimental result.
Figure 4 shows experimental data along with the com-

bined fit with its extrapolated curve. For this plot, our data
at the lattice pion masses are shifted to the physical pion
mass and plotted on top of the extrapolation. We do this
by subtracting from the individual lattice points, F latπ (Q

2),
a value (Fπ(Q

2,m2π,lat)−Fπ(Q
2,m2π,phys)) calculated with

Fig. 4. Combined fit to (21) of our data for all lattices. We plot
experimental data (diamonds) [18, 21, 24] and lattice results ex-
trapolated to the physical pion mass as explained in the text.
To avoid having a cluttered plot we do not show lattice results
with errors bigger than 80%, which are nevertheless included
in the fit. The insert shows the good agreement to the experi-
mental data for a momentum transfer of up to 1 GeV2. Also
included is an error band for the fit

the fit parameters of (21) at the respective pion masses.
The errors are left unchanged. We find good agreement be-
tween our simulation and the experimental results. This
is emphasised by the insert in Fig. 4, which shows the re-
gion Q2 < 1 GeV2, where most of the experimental points
lie. The same fit for the pions with Γ = γ5 gives Mphys =
0.773(17)GeV, with a bigger χ2/d.o.f. of 1.01.
We now investigate the validity of the monopole ansatz

for our data. Instead of constraining the fitting function to
amonopole form, one can also take a general power law, i.e.
use a function

Fπ(Q
2,m2π) =

(
1+

Q2

pM2 (m2π)

)−p
,

M2
(
m2π
)
= c0+ c1m

2
π , (22)

with an additional parameter, p. Note that the relation
(18) is still valid, independent of p. A combined fit to all our
data sets results in p= 1.173(58), now with amassMphys =
0.757(18)GeV and a χ2/d.o.f. = 0.58, indicating that the
monopole form is a good description. Taking the difference
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Fig. 5. Effective monopole massesMeff(Q
2) defined in (23), to-

gether with the corresponding monopole masses from Table 3
(dotted lines) for a sample of our lattices from small to large
pion masses (lattices number 8, 7, 4, 9, 2, 10, 15, and 11 from
top to bottom). For better visibility we omitted two points with
very large errors in the plot, but included them in the fit

between this number and the result of the fit to (21), we as-
sign a systematic error of ∆Mfit = 30MeV toMphys due to
the ansatz for the fitting function. Another alternative is to
calculate an effective monopole mass for every momentum
Q2 separately by solving (20) forMlat:

Meff
(
Q2
)
=Q

[
1

F latπ (Q
2)
−1

]−1/2
. (23)

We show such effective masses for some of our lattices
in Fig. 5, where one can see that the effective monopole
masses stay constant within errors over a large range ofQ2

and agree with the monopole masses given in Table 3. This
again indicates that the monopole is a good description for
our data. The validity of the fit over the whole Q2 range is

Fig. 6. Combined fits to (21) with reduced
fitting ranges in Q2. For the left plot Q2max
is decreased, while Q2min is increased for the
right plot. We use bins of 50MeV2 and show
only points where the number of data points
in the fit of Fπ changed

further tested by combined fits to (21) in a limited fitting
range Q2 ≤ Q2max or Q

2
min ≤ Q

2. This is shown in Fig. 6,
where we successively limit the fit to smaller (larger) mo-
menta. Note that the increasing errors to the left or the
right are due to the decrease in the number of fitted data
points. Within these errors, the change in the monopole
mass is consistent with statistical fluctuations. From Figs.
5 and 6 we can conclude that the monopole ansatz works
well in the entire region for which we have lattice data,
fromQ2 = 0 to about 4 GeV2.
The results discussed so far have used the lattice data

normalised as in (19). Using

ZV F
lat,bare
π (0) = F lat,renπ (0) = 1 , (24)

we can determine ZV from our (unrenormalised) data at
zero momentum transfer. We find reasonable agreement
with the values of ZV given in [11], albeit with errors that
are larger by at least an order of magnitude. The bigger er-
rors are likely due to our choice of tsink, which results in
noisier two-point functions.

5.2 Finite volume and discretisation effects

Let us now turn to the discussion of lattice artifacts. Apart
from the extrapolation to the physical pion mass there are
two more limits to be taken: the infinite volume limit and
the continuum limit. The large number of lattices available
allows us to investigate both. In order to study the volume
dependence of our results, we make use of two sets of con-
figurations that have the same parameters, β and κ, for
the lattice action but different volumes (see Table 5). In
Fig. 7a we show the monopole masses fitted according to
(20) as a function of the lattice sizeL. We use the pion mass
mπ and lattice spacing a determined for the lattice with
the largest volume also for the smaller ones. Figure 7b gives
an overview of our lattices in themπ–L plane.
To obtain some understanding of the volume depen-

dence, one may have recourse to chiral perturbation the-
ory. The volume dependence of the pion charge radius has
been investigated to one-loop order in various approaches
of chiral perturbation theory [26–28]. In the continuum
limit, the result of the lattice regularised calculation in [28]
amounts to a finite size correction of

〈
r2
〉
L
−
〈
r2
〉
∞
=

3

8π2f2π

∑

n �=0

K0(Lmπ|n|) , (25)
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Table 5. Overview of our finite size runs. Note that we use the pion mass and lattice spacing of the
largest lattice also for the smaller ones. They are given in Table 1 and not repeated here

β κ # N3×T L [fm] mπL Mlat [GeV] ∆Mlat [MeV]

5.29 0.13550 10 243×48 2.0 7.8 0.971(14) 1.4

10a 163×32 1.3 5.2 0.928(16) 19.7

10b 123×32 1.0 3.9 0.841(48) 75.0

5.29 0.13590 11 243×48 1.9 5.7 0.854(15) 12.6

11a 163×32 1.3 3.8 0.786(18) 90.3

11b 123×32 1.0 2.9 0.513(31) 263.1

Fig. 7. a Monopole mass versus lattice
size in our finite volume data sets with
β = 5.29 and κ= 0.1355 (upper points) or
κ= 0.1359 (lower points). The curves cor-
respond to a fit to (26) as discussed in the
text. b Overview of pion masses and lat-
tice sizes for our complete data set. The
dotted lines mark our finite size runs

where the sum runs over all three-vectors n �= 0 with in-
teger components and fπ ≈ 92MeV is the pion decay con-
stant. Note that the finite size correction of the charge
radius is not proportional to m2π, unlike for other quanti-
ties such as the pion decay constant or the nucleon axial
coupling. The leading contribution in (25) for large values
ofmπL is proportional toK0(mπL)∼

√
π/(2mπL)e

−mπL.
Unfortunately we cannot expect chiral perturbation the-
ory to be applicable at the pion masses and lattice vol-
umes used in our simulations. This includes the result (25),
which we take however as a guide for the functional form
of the volume dependence. We thus change the monopole
mass in (21) to3

M2(m2π, L) = c0+ c1m
2
π+ c2 e

−mπL . (26)

We then perform a combined fit to the data of all lat-
tices in Table 1 except for number 12 (see below), includ-
ing in addition the 163× 32 lattices of the finite volume
runs (numbers 10a and 11a). The result is represented by
the solid lines in Fig. 7a. The fitted parameters are c0 =
0.553(29)GeV2, c1 = 0.612(35) and c2 =−6.97(1.71)GeV2

at χ2/d.o.f. = 0.62, which givesMphys = 0.751(19)GeV for
the infinite volume limit of the monopole mass at the
physical point. Compared with the value 0.727(16)GeV
obtained in the fit (21) without volume dependence, this
represents a small overall finite size effect. The fitted pa-
rameters do not change significantly if we only fit the 163×

3 Taking the Bessel function K0(mπL) instead of e
−mπL

does not change our results significantly.

32 and 243× 48 data sets of the finite volume runs, i.e.
the data corresponding to the four rightmost points in
Fig. 7a (lattices number 10, 10a, 11, and 11a). We have not
included the 123×32 lattices in the fit (26), since we can-
not expect our simple ansatz to hold down to lattice sizes
of 1 fm. Qualitatively, our fit is not too bad even in this
region, as shown by the dotted lines in Fig. 7a.

Fig. 8. The ratio rimp(Q
2) defined in (28), evaluated for our

coarsest lattice (β = 5.20, κ = 0.1342). To obtain the effect of
O(a) improving the current, this ratio needs to be multiplied
with cV



D. Brömmel et al.: The pion form factor from lattice QCD with two dynamical flavours 343

With the fitted parameters we can estimate the finite
volume shift for each of our lattices as given in Table 3.
Except for a few lattices we find very small effects. We do
not expect that with the simple form (26) fitted to our
finite volume data at mπ = 591MeV and mπ = 769MeV
(the dotted lines in Fig. 7b) we can estimate volume ef-
fects for pion masses as low as 400MeV. We therefore
have excluded lattice number 12 from our finite volume
investigation.
Before discussing the scaling behaviour, let us briefly

discuss the possibility of O(a) improving the local vector
current. The improved current has the form

V impµ (x) = u(x)γµu(x)+ cV a∂νTµν(x) ,

Tµν(x) = iu(x)σµνu(x) . (27)

The improvement coefficient cV is only known from lattice
perturbation theory [10], because the only non-pertur-
bative calculations to date are for quenched fermions
(see e.g. [29]). However, even with tadpole improvement
the perturbative value for our coarsest lattice is cV ≈
−0.027. This is so small that we expect no sizable ef-
fect on our results. To see this, we plot in Fig. 8 the

Fig. 9. Scaling test: the upper plots show
extrapolations as in Fig. 3 for each β sep-
arately. The lower plot shows the extrap-
olated values of the monopole mass at the
corresponding square of the lattice spac-
ing

ratio

rimp
(
Q2
)
=
〈π(p′)| a∂νTµν |π(p)〉

〈π(p′)|uγµu |π(p)〉
(28)

of the pion matrix elements for the two operators on the
r.h.s. of (27). The dependence on the index µ cancels in
this ratio. Note that here we use unrenormalised lattice
data and that we still have to multiply with cV in order
to obtain the effect of the improvement term in the cur-
rent. This example plot is for our coarsest lattice (β =
5.20 and κ= 0.1342), where the improvement term should
have the largest impact. To gain a feeling for the pos-
sible size of the effect, we used a fixed value of cV =−0.3
to compute the effect on a sub-set of our lattices (lat-
tices number 2, 6, 11, 15). Although this improvement co-
efficient is more than ten times larger than the tadpole
improved value for our coarsest lattice, the shift of the
monopole mass was moderate with 6 to 10%. Given the
size of our statistical errors on Fπ and the fact that a reli-
able value for cV is not known for our lattices, we decided
to neglect operator improvement and use the local vector
current.
We now investigate the scaling behaviour by extrap-

olating our values for the monopole mass to the physi-
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Table 6. An overview of lattice results for the pion charge radius along with
the experimental value. We only quote results that are extrapolated to the
physical point. The quoted lattice errors are purely statistical

〈
r2
〉
[fm2] type of result Reference

0.452(11) experimental value PDG 2004 [25]

0.441(19) Clover improved Wilson fermions, Nf = 2 this work
0.396(10) Clover improved Wilson fermions, Nf = 2 JLQCD [9]
0.37(2) Wilson fermions, quenched [5]
0.310(46) hybrid ASQTAD/DWF, Nf = 2+1, 3 LHPC [8]

cal pion mass separately for each β (see the upper plots
in Fig. 9). We again assume a linear relation between
the squared monopole and pion masses. The extrapolated
values can then be studied as a function of the lattice spac-
ing a, using r0/a extrapolated to the chiral but not to the
continuum limit [30].4 This is shown in the lower plot in
Fig. 9. While the three rightmost data points in the lower
plot of Fig. 9 strongly suggest that no discretisation errors
are present within statistical errors, it requires additional
simulation points to see if the leftmost data point in the
lower plot of Fig. 9 represents a downwards trend or is just
an outlier. From the discussion above and the overview
in Table 3 we recall that some of the points at low pion
mass may be affected by finite volume corrections.We have
repeated the fits shown in Fig. 9 with squared monopole
masses shifted upwards by c2 e

−mπL, where c2 (in units
of r−20 ) was taken from the global fit described after (26).
Note that the pion mass of 400MeV is excluded from this
global fit for the reasons given above. The result shows
an increase of Mphys mainly for β = 5.20 and 5.40 but is
again consistent with no a dependence. Given the lever arm
in a2 and the size of our statistical and finite size errors,
we refrain from including an explicit a dependence of the
monopole mass in our global fit (21).

6 Conclusion

We have calculated the electromagnetic form factor of
the pion, using lattice configurations generated by the
QCDSF/UKQCD collaboration with two flavours of dy-
namical,O(a) improvedWilson fermions. The correspond-
ing pion masses range from 400 to 1180MeV. The momen-
tum dependence of the pion form factor was studied up to
Q2 around 4GeV2. Within errors, the pion form factor is
described very well by a monopole form (20) in this range,
for all our lattice pion masses. A linear chiral extrapola-
tion to the physical pion mass leads to a monopole mass of
M = 0.727(16)GeV. This corresponds to a squared charge
radius

〈
r2
〉
= 0.441(19) fm2, in good agreement with ex-

periment. Our extrapolated lattice data for the form fac-
tor is compared with experimental measurements in Fig. 4.
Other lattice results are quoted in Table 6.

4 We have updated values for r0/a with respect to [30]:
for β = 5.20, 5.25, 5.29 and 5.40, they are r0/a = 5.444(72),
5.851(85), 6.158(53) and 6.951(54), respectively.

The large parameter space of the gauge configura-
tions we used makes it possible to explore artifacts arising
from the finite lattice spacing and volume. An empiri-
cal fit allowing for a volume dependence leads to an in-
crease of the monopole mass by 3% at infinite volume
and the physical point. Within errors, our results show
no clear dependence on the lattice spacing in the range
a = 0.07–0.11 fm of our simulations. Including estimates
for systematical errors, our final result then isM = 0.727±
0.016(stat)± 0.046(syst) + 0.024(vol)GeV, which trans-
lates to a charge radius of 〈r2〉 = 0.441± 0.019(stat)±
0.056(syst)−0.029(vol) fm2. The first error is purely sta-
tistical, followed by a systematic uncertainty due to the
ansatz for the fitting function and the extrapolation to
physical pion masses (for which we added in quadra-
ture the errors ∆Mext and ∆Mfit obtained in Sect. 5.1).
The last error reflects a possible shift because of fi-
nite volume effects as just discussed. We have set the
scale using the Sommer parameter with r0 = 0.467 fm.
We note that the analysis leading to our result for M
is independent of the scale setting, so that a different
value of r0 would lead to a simple rescaling of the above
values.
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LAT2005, 360 (2005)

2. G. Martinelli, C.T. Sachrajda, Nucl. Phys. B 306, 865
(1988)
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